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Multiple sequence alignments (MSAs) are used for struc-
tural1,2 and evolutionary predictions1,2, but the complexity 
of aligning large datasets requires the use of approximate 
solutions3, including the progressive algorithm4. Progressive 
MSA methods start by aligning the most similar sequences 
and subsequently incorporate the remaining sequences, from 
leaf to root, based on a guide tree. Their accuracy declines 
substantially as the number of sequences is scaled up5. We 
introduce a regressive algorithm that enables MSA of up to 
1.4 million sequences on a standard workstation and sub-
stantially improves accuracy on datasets larger than 10,000 
sequences. Our regressive algorithm works the other way 
around from the progressive algorithm and begins by aligning 
the most dissimilar sequences. It uses an efficient divide-and-
conquer strategy to run third-party alignment methods in lin-
ear time, regardless of their original complexity. Our approach 
will enable analyses of extremely large genomic datasets such 
as the recently announced Earth BioGenome Project, which 
comprises 1.5 million eukaryotic genomes6.

Until the first benchmarking of large-scale MSAs, analyses made 
on smaller datasets suggested that scale-up would result in increased 
accuracy7. However, it has now been established that alignments 
with more than a thousand sequences are less accurate than smaller 
alignments5. It has been speculated8 that this fall in accuracy is due 
to the inability of progressive methods to deal with the large number 
of gaps accumulated during intermediate alignment steps9. Recent 
attempts to address this problem have included SATé10 and its fol-
low-up PASTA11,12, a progressive algorithm in which the guide tree 
is split into subsets that are independently aligned and later merged. 
This divide-and-conquer strategy allows computationally inten-
sive methods to be deployed on large datasets but does not allevi-
ate the challenge of merging very large intermediate MSAs. More 
recent alternatives include the MSA algorithms UPP13 and MAFFT-
Sparsecore14 (Sparsecore). Both of these methods rely on selecting a 
subset of ‘seed’ sequences and turning them into a Hidden Markov 
model (HMM) using either PASTA or the slower, more accurate 
version of MAFFT. The HMM is used to incorporate all the remain-
ing sequences one by one. The downside of this approach is that the 
seed sequences are insufficiently diverse and therefore preclude the 
accurate alignment of distantly related homologs to the seed HMM.

We considered that a regressive algorithm would address this 
problem by combining the benefits of a progressive approach 
when incorporating distant homologs with the improved accuracy 
of seeded methods. We needed to fulfill two simple constraints: 

the splitting of the sequences across sub-MSAs each containing a 
limited number of sequences and their combination into a MSA 
without the requirement of an alignment procedure. The main dif-
ference between our approach and existing ones lies in the order in 
which sequences are aligned, starting with the most diverse.

Given M sequences, the sub-MSAs are collected as follows. 
A clustering algorithm is first used to identify N nonoverlapping 
sequence groups of unspecified size—the children. N defines both 
the maximum number of children at any level and the maximum 
size of each sub-MSA. It constitutes the only free parameter of the 
algorithm. The first sub-MSA, the parent, is computed by selecting 
a representative sequence from each child group and by aligning 
theses N representatives with an MSA algorithm such as Clustal 
Omega (ClustalO), MAFFT or any suitable third-party software. 
The clustering algorithm is then re-applied onto every child group 
in which N new representatives are collected and multiply aligned 
to yield one child sub-MSA for each sequence in the parent. In each 
child group, the N new representatives are selected in such a way 
that the corresponding child MSA has exactly one sequence in com-
mon with its parent—the common representative. The procedure 
runs recursively by treating each child as a parent for the next gen-
eration until every sequence has been incorporated. The final MSA 
is produced by merging all the sub-MSAs. The merging of a child 
with its parent is done without additional alignment thanks to the 
common representative sequence. This sequence, present in both 
the child and its parent, enables the stacking of the corresponding 
positions (Fig. 1a). When doing so, insertions occurring within the 
representative, either in the child or in its parent, are projected as 
deletions (that is, gaps) in the other. Because of the way they are 
projected during merging, these insertions and their corresponding 
gap symbols do not need to be allocated in memory. They can be 
kept as counts and merely expanded while the MSA is written onto 
disk, thus dramatically decreasing the memory footprint.

A key step of this recursion is the clustering method and the 
subsequent selection of the N representative sequences. Our bench-
marking suggests N = 1,000 to be a sensible choice (Supplementary 
Fig. 1a,b). This value is in agreement with a previous report on the 
largest number of sequences that can be directly aligned without 
accuracy loss5. The clusters were estimated from binary guide trees 
produced by existing large-scale MSA algorithms such as Clustal 
Omega (ClustalO) and MAFFT. The use of a binary tree to extract 
the most diverse sequences was inspired by an existing taxon sam-
pling procedure15. In our implementation (Supplementary Note 1),  
every node gets labeled with the longest sequence among its  
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descendants. Given a fully labeled tree, the sequences of the first par-
ent sub-MSA are collected by the breadth-first traversal of the tree, 
starting from the root through as many generations as required to 
collect N sequences (Fig. 1b). Because of the way they are collected 
along the tree, these N first sequences are as diverse as possible. 
Within the resulting sub-MSA every sequence is either a leaf or the 
representative of an internal node ready to be processed (Fig. 1c).

Our algorithm does not depend on specific alignment or guide-
tree methods and therefore lends itself to be combined with any 
third-party software. This property enabled us to run various  
alignment software both directly and in combination with the 
regressive algorithm. A combination involves estimating a guide  
tree with an existing method, collecting sequences with the regres-
sive algorithm and then computing the sub-MSAs with an existing  
MSA algorithm. By doing so we were able to precisely quantify 

the impact of our algorithm on both accuracy and computational 
requirements. We used as a benchmark the HomFam protein data-
sets5 in which sequences with known structures—the references—
are embedded among large numbers of homologs. Accuracy is 
estimated by aligning the large dataset and then comparing the 
induced alignment of the references with a structure-based align-
ment of these same references16. We started by benchmarking the 
ClustalO and MAFFT-FFTNS-1 (Fftns1) MSA algorithms using 
two guide-tree methods: ClustalO embedded k-means trees17 
(mBed) and MAFFT-PartTree18 (PartTree). These widely adopted 
software packages were selected because they support large-scale 
datasets, are strictly progressive and allow the input and output of 
binary guide trees.

In three out of four combinations of guide tree and MSA algo-
rithms, the regressive combination outperformed the progressive  
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Fig. 1 | regressive algorithm overview. a, Parent and children sub-mSAs are merged via their common sequence (blue) whose indels are projected from 
child to parent (green) and parent to child (red). b, The sub-mSAs are produced after collecting sequences from a binary guide tree with each node 
labeled with the name of its longest descendant sequence. Sequences are collected by traversing the tree in a breadth-first fashion. Pale red color blocks 
indicate how the N parent sequences (N = 3) are collected by recursively expanding nodes. The same process is then applied to gather the children (green) 
and the grandchildren (blue). c, In the nine resulting sub-mSAs that are displayed, one should note the presence of a common representative sequence 
between each child and its parent.

Table 1 | TC score and average CPu time (s) on the 20 HomFam datasets containing over 10,000 sequences

TC score (%) CPu time (s)

Tree method MSA algorithm Nonregressive regressive reference Nonregressive regressive

PartTree Fftns1 29.64 35.16 47.84 334 118

mBed Fftns1 41.33 37.94 52.03 277 156

PartTree ClustalO 26.94 42.21 50.54 3,017 377

mBed ClustalO 39.03 41.91 53.71 570 338

Average 34.24 39.31 51.03 1,050 247

default/mBed UPP 44.93 47.15 49.78 8,354 7,186

default/mBed Sparsecore 44.98 51.06 53.50 2,313 3,184

PartTree Gins1 – 47.54 49.46 – 12,478

mBed Gins1 – 50.20 53.07 – 10,834
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one. When considering the most discriminative measure (total 
column score (TC) in Table 1) on the datasets with over 10,000 
sequences, the regressive combination delivered MSAs that  
were on average 5.13 percentage points more accurate than  
when computed progressively (39.31 and 34.24, respectively). These 
differences remained comparable, albeit reduced, when considering  

the contribution of smaller datasets (Supplementary Tables 1  
and 2). Within this first set of analyses, the regressive combina-
tion of ClustalO with PartTree was the most accurate and on the 
large datasets it outperformed its progressive counterpart by 
15.27 percentage points (42.21 and 26.94, respectively, Wilcoxon  
P value < 0.001).

Nonregressive ClustalO with mBed trees

Regressive ClustalO with mBed trees

Regressive Gins1 with mBed trees
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Fig. 2 | relative performances of alternative MSA algorithm combinations. a, Average differential accuracy of datasets larger than number of sequences 
(horizontal axis). The differences of accuracy are measured between the reference sequence mSAs and their embedded projection in the large datasets. 
For each combination, n = 75 independent mSA samples. The envelope is the standard deviation. b, In this CCA, the first component (horizontal axis, 14.1% 
of the variance) is constrained to be the TC score accuracy as measured on datasets larger than 10,000. The best unconstrained component (vertical axis) 
explains 20.8% of the remaining variance. Combinations (dots with their accuracy on the lower horizontal axis) are categorized by their guide tree (blue), 
mSA algorithms (gray) and regressive/nonregressive procedure (red). Vectors indicate the contributions to variance of each category from the three 
variables. Their projection onto the upper horizontal axis quantifies the contribution to variance of overall accuracy. For each combination, represented 
with a dot, N = 20 independent mSA samples.
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We also tested the seed-based nonprogressive MSA algorithms 
Sparsecore14 and UPP13. In both cases, their accuracy improved 
when combined with the regressive algorithm. For instance, the 
regressive combination of Sparsecore with mBed guide trees yielded 
the best readouts of this study on the very large alignments, and 
a clear improvement over the default Sparsecore (TC score 51.07 
versus 44.98, Wilcoxon P < 0.1). Comparable results were observed 
when extending this analysis to the sum-of-pair metrics or to 
smaller datasets (Supplementary Tables 1 and 2). The regressive 
algorithm is especially suitable for the scale-up of computationally 
expensive methods. For instance, the consistency-based variant of 
MAFFT named MAFFT-G-INS-1 (Gins1)19, was among the most 
accurate small-scale MSA algorithms on the reference sequences. 
Gins1 cannot, however, be deployed on the HomFam datasets 
because its computational requirements are cubic with the number 
of sequences thus restricting it to a few hundred sequences. By com-
bining Gins1 with the regressive algorithm we overcame this limi-
tation and produced the most accurate readouts on datasets larger 
than 1,000 sequences (Supplementary Tables 1 and 2).

We complemented these measures of absolute accuracy with an 
estimate of accuracy degradation when scaling up. The effect of 
extra homologous sequences degrading the alignment accuracy of 
an MSA can be quantified by comparing the small MSAs of the ref-
erence sequences alone with their corresponding large-scale data-
sets. With the default progressive MSA algorithms ClustalO and 
Fftns1, the large datasets were on average 16.79 percentage points 
less accurate than when aligning the reference sequences on their 
own (Table 1, 34.24 and 51.03, respectively) with the trend being 
amplified on the larger alignments (Fig. 2a). Yet, on this same com-
parison, the regressive combinations were only affected by 11.72 
points (Supplementary Fig. 2). The improved stability of the regres-
sive combination was especially clear when considering Gins1 
(Fig. 2a and Supplementary Fig. 2a) that was merely degraded by 
2.87 percentage points thus achieving on the large datasets a level 
of accuracy close to the one measured on the reference sequences 
alone (Table 1, 50.20 and 53.07, respectively).

Identifying the factors driving accuracy improvement can be 
challenging considering that each alignment procedure relies on 
different combinations of algorithmic components (that is, regres-
sive/nonregressive, tree method, MSA algorithm). For this purpose, 
we used constrained correspondence analysis (CCA)20, a dimen-
sionality reduction method adapted for categorical variables. When 
applied to Table 1 data, CCA allowed us to estimate the relative 
impact of each method’s algorithmic component with respect to a 
constraining variable—accuracy in this case. As one would expect, 
the MSA algorithm is the most influential variable with respect to 
accuracy but CCA confirmed the general benefits of switching from 
a nonregressive to a regressive combination (Fig. 2b).

The most counterintuitive property of the regressive algorithm is 
its dependency on an initial parent MSA whose level of identity is 
imposed by the guide tree. Given an optimal guide tree, the level of 
identity of this initial parent is expected to be as low as possible. This 
first step is central to the algorithm’s divide-and-conquer strategy, 
but it is unclear whether so much diversity at this early stage would 
harm accuracy prospects. We addressed this question by using 
HomFam to generate several alternative parent MSAs with different 
levels of identity for each dataset (that is, the same MSA algorithm 
and dataset but different guide trees). We then computed the final 
MSA corresponding to each parent and did not find any signifi-
cant relationship between parent identity and final MSA accuracy 
(Supplementary Table 3). By contrast, a similar comparison across 
datasets (that is, same MSA algorithm and guide-tree method but 
different dataset) shows a strong positive dependency between par-
ent identity and final MSA accuracy (Supplementary Table 4). This 
analysis confirms that, when using the regressive algorithm, the 
choice of very diverse sequences as a starting point does not incur 

a penalty while, as one would expect, datasets with lower identity 
result in MSAs with lower accuracy.

When using the same guide tree for the regressive and nonregres-
sive alignment combinations, improved accuracy comes along with 
substantially improved computational performance. On average,  

ClustalO-PartTree

Fftns1-PartTree

Sparsecore-mBed

Gins1-mBed

Gins1-PartTree

UPP-mBed

Fftns1-mBed

ClustalO-mBed

10,000,0001,000,000100,000

30

35

40

45

50

T
ot

al
 c

ol
um

n 
sc

or
e 

ac
cu

ra
cy

 (
%

)

CPU time (ms)

a

b

1,000 2,000 3,0000

CPU time (s) for ClustalO/mBed/nonregressive

C
P

U
 ti

m
e 

(s
) 

fo
r 

C
lu

st
al

O
/m

B
ed

/r
eg

re
ss

iv
e

Nonregressive

Regressive

1,000

2,000

3,000

0

Fig. 3 | CPu requirements of the regressive algorithm on HomFam 
datasets containing more than 10,000 sequences. a, The total CPU 
requirements (horizontal axis) and average TC score accuracies (vertical 
axis). The corresponding nonregressive (blue square) and regressive  
(red circles) combinations are connected by a dashed line with the exception 
of Gins1 for which the nonregressive computation costs are prohibitive. 
For each combination, represented as a circles and squares, N = 20 
independent mSA samples. b, Comparison of CPU time requirements 
for ClustalO using mBed trees using a regressive and a nonregressive 
procedure on HomFam datasets containing more than 10,000 sequences. 
Each point represents an independent mSA. N = 20 independent mSA 
samples. A linear regression (gray) was fitted on the resulting graph 
(R2 = 0.89, P = 6.9 × 10−10).

NATurE BIoTECHNoLoGy | VOL 37 | DECEmBER 2019 | 1466–1470 | www.nature.com/naturebiotechnology 1469

http://www.nature.com/naturebiotechnology


Letters NATurE BIOTEchNOlOGy

the regressive combinations require about fourfold less central pro-
cessing unit (CPU) time than their nonregressive equivalent on data-
sets larger than 10,000 sequences (Table 1). Seeded methods such as 
UPP or Sparsecore appear to benefit less from the regressive deploy-
ment with marginal differences in CPU requirements (Fig. 3a).  
When considering MSA algorithms such as ClustalO or Fftns1 
that scale linearly with the number of sequences, the improvement 
yielded by the regressive combination was roughly proportional to 
the original nonregressive CPU requirements. For instance, in the 
case of ClustalO using mBed trees, the regressive combination was 
about twice as fast as the progressive alignment and appeared to have 
a linear complexity (Fig. 3b). The situation was even more favorable 
when considering CPU intensive MSA algorithms such as Gins1 for 
which the nonregressive computation had been impossible.

We further explored the scaling up capacities of our algorithm 
using 45 Pfam 28.0 families21 containing between 100,000 and 
1.4 million sequences for the largest (ABC transporter family, 
PF00005). Although they lack a structural reference, these families  
were selected among the largest entries so as to provide a biologically  
realistic benchmark for scalability. When using a standard work-
station (48 Gb of RAM, 160 CPU hours), the regressive methods 
were the only ones able to process all 45 datasets while the non-
regressive methods tend to fail above 240,000 sequences and can 
only align a maximum of 500,000 sequences for the most robust 
(Supplementary Tables 5 and 6).

The ability to use slow and accurate MSA algorithms in linear 
time regardless of their original computational complexity is the 
most important feature of the regressive algorithm. It allows the 
application of any of these methods—natively—onto extremely 
large sequence datasets. This linearization is an inherent property of 
the regressive procedure in which all the sequences are split across 
sub-MSAs of a bounded size (that is, N = 1,000 sequences). This 
bounding in size results in a bounded computational cost. Since the 
total number of sub-MSAs is proportional to the initial number of 
sequences, the resulting complexity for the final MSA computation 
is linear. Furthermore, owing to the computational independence 
of the sub-MSAs, the regressive algorithm turns MSA computation 
into an embarrassingly parallel problem22.

Our regressive algorithm provides a practical and generic solu-
tion to the critical problem of MSA scalability. It is a versatile algo-
rithm that lends itself to further improvements—for instance, by 
exploring the impact of more sophisticated clustering structures, 
such as m-ary guide trees, or by testing different ways of selecting 
the representative sequences. The regressive algorithm is nonethe-
less a mature development framework that will enable a clean break 
between the improvement of highly accurate small-scale MSA algo-
rithms—such as Gins1—and the design of more efficient large-scale 
clustering algorithms, such as PartTree and mBed. This divide will 
help potentiate the large body of work carried out in the cluster-
ing and alignment communities over the last decades and hopefully 
speed up the development of new improved methods. Achieving 
this goal is not optional. There is a Red Queen’s race going on in 
genomics. It started the day omics’ data growth overtook computing 
power and it shows no signs of slowing23.
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Methods
Reference datasets. The HomFam dataset was downloaded from the Clustal 
Omega website (http://www.clustal.org/omega/homfam-20110613-25.tar.gz). It 
features 94 families that contain homologous sequences extracted from Pfam 25. 
Each dataset is associated with a smaller set of reference sequences for which a 
structure-based alignment is available. For each family, the large-scale datasets are 
produced by merging the reference and the homologous sequences into a single 
file. The very large datasets were assembled by selecting 45 Pfam families whose 
sizes range between 100,000 and 1.4 million sequences. Summary statistics of the 
very large datasets are provided in Supplementary Table 7.

Multiple alignments and guide trees. The regressive algorithm is implemented in 
T-Coffee (hash cd5090c in the GitHub repository) and uses third-party methods 
for guide tree and sub-MSA computation. The sub-MSAs were produced using 
Clustal Omega (v.1.2.4), UPP (v.4.3.4) and MAFFT (v.7.397) for Gins1, Fftns1 
and Sparsecore. The mBed and PartTree guide trees were estimated using the 
-guidetree-out option of Clustal Omega and the -parttree option of MAFFT. 
Random trees were generated by shuffling the taxa on the original mBed trees 
(+newick_randomize option in T-Coffee/seq_reformat). Parent MSAs were 
collected using a specific T-Coffee flag triggering their output as intermediate files 
(DUMP_ALN_BUCKET = 1).

Benchmarking. Benchmarking was carried out by aligning either the reference 
or the large-scale datasets, and by comparing the projection of the reference 
sequences with their reference alignment using the aln_compare option of the 
T-Coffee package. This option supports the sum-of-pairs (fraction of pairs of 
residues in the reference alignment found in the benchmark) and the TC score 
(fraction of columns in the reference alignment found in the benchmark) metrics24.

Constrained correspondence analysis. Each alignment procedure (for example, 
regressive ClustalO using mBed tTrees) is represented in the form of a string of 
zeros and ones encoding its categorical variables (guide-tree method, aligner, 
assembler). Within this string, each variable is encoded in a substring whose  
length is equal to the number of levels (for example, number of alternative  
guide-tree methods). These substrings therefore contain a single entry so that  
the entire string sums to the number of variables for any given procedure (that 
is, three in our case). Once encoded this way alignment procedures become 
the rows of an indicator matrix that can be analyzed with dimensionality 
reduction techniques such as multiple correspondence analysis. In constrained 
correspondence analysis (CCA; also known as canonical correspondence 
analysis) dimensionality reduction is guided by additional information about 
each observation. In our case, this information is the accuracy (TC score) of 
each alignment procedure averaged across the 20 datasets containing over 10,000 
sequences. The application of CCA involves projecting the indicator matrix onto 
a linear space defined by the accuracy vector20. The technique makes it possible to 
then perform a singular value decomposition and displayed in the form of a biplot 
as in Fig. 2b. Calculations were carried out using the R package Vegan (https://
cran.r-project.org/package=vegan). Percentage variance explained is obtained by 
dividing the eigenvalue of the respective axis with the sum of all the eigenvalues, 
multiplied by 100.

Relationship between parent MSA identity and accuracy. The 75 HomFam 
datasets containing more than 1,000 sequences were regressively aligned using 
three guide-tree methods (mBed, PartTree and randomized mBed) along with 
four MSA algorithms (ClustalO, Fftns1, UPP and Sparsecore). For a given dataset, 
the use of different guide trees usually results in different parent MSAs. We 
therefore collected all 900 pairs of combinations involving the same dataset, the 
same MSA algorithms and two different guide trees. Results were compiled in a 
contingency table counting increase or decrease of the parent MSA percent identity 
as well as increase or decrease of the MSA accuracy (as measured by TC score). 
A two-sided Fisher test (implemented in R) was used to test the null hypothesis 
of no association (that is, odds ratio 1). The ratio of the odds of increasing 
accuracy versus decreasing accuracy was 0.85 times higher for the cases where 
identity increased than for the cases where identity decreased (P < 0.29). To do 
a comparable analysis across different datasets, we collected all the 33,000 pairs 
of combinations involving a different dataset, the same MSA algorithms and the 
same guide trees. Here, the odds of increasing versus decreasing accuracy were 4.1 
times higher in the cases where identity increased than in the cases where identity 
decreased (P < 10−15).

Computation. All computation was carried out on a cluster running Scientific 
Linux release 7.2 with all guide trees, alignments and evaluations carried out within  
a container based on the Debian (Jessie) operating system. The computational 
pipeline (see the Code availability section) was implemented in the Nextflow 
language25 and was deployed in a containerized form using Singularity. Computation 
was limited to 48 Gb of memory and 160 CPU hours. Given a HomFam family, 
this pipeline generates the mBed and PartTree guide trees for both the reference 
and the large-scale dataset. It then combines the selected aligners (ClustalO, Gins1, 
Fftns1, Sparsecore and UPP) and the precomputed guide trees to generate  
(1) a default alignment of the reference sequences (2) a default (that is, 
nonregressive) alignment of the large-scale dataset and (3) a regressive alignment 
of the large-scale dataset. Note that UPP and Sparsecore do not support external 
guide trees and that their default alignments were therefore produced using the 
default guide-tree procedures of these methods. A Docker image has been created 
that contains all the pipeline dependencies. It is available from DockerHub  
(https://hub.docker.com) and is available via the following command:

docker pull cbcrg/regressive-msa:cd5090c
The Dockerfile is also provided in the Git repository to allow for reuse and 

addition of new tools. All command lines used by the pipeline are also provided in 
the dedicated Supplementary Materials section (Supplementary Note 2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data, analyses and results are available from Zenodo (https://doi.org/10.5281/
zenodo.3271452).

Code availability
The regressive alignment algorithm has been implemented in T-Coffee and 
is available at the T-Coffee website (http://www.tcoffee.org) and on GitHub 
(https://github.com/cbcrg/tcoffee). A GitHub repository containing the Nextflow 
workflow25 and Jupyter notebooks26 to replicate the analysis are available at  
https://github.com/cbcrg/dpa-analysis (release v.1.2).
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Data collection The regressive alignment algorithm has been implemented in T-Coffee and is available for immediate use via Bioconda, the T-Coffee 
website (http://www.tcoffee.org) and GitHub (https://github.com/cbcrg/tcoffee).

Data analysis All data, analyses and results are available from Zenodo (https://doi.org/10.5281/zenodo.3271452). A repository containing the Nextflow workflow and Jupyter notebooks
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Replication All multiple sequence alignments were independently carried out at least twice by separate lab members. Furthermore, the entire study is 
reproducible from input sequences through to figures using the provided Jupyter notebooks, Nextflow workflows and Docker containers.
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Large multiple sequence alignments with a root-to-leaf regressive method
	Online content
	Fig. 1 Regressive algorithm overview.
	Fig. 2 Relative performances of alternative MSA algorithm combinations.
	Fig. 3 CPU requirements of the regressive algorithm on HomFam datasets containing more than 10,000 sequences.
	Table 1 TC score and average CPU time (s) on the 20 HomFam datasets containing over 10,000 sequences.




